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ABSTRACT 

In a recent monograph we have shown that the higher 

order kinetic equations are divergent in an irreparable fashion. 

In the present paper we determine completely the singularities 

in the nth order s-body distribution function for the Weak- 

Coupling Kinetic Theory (supersecularities). 
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I. INTRODUCTION 

In a recent monograph (l) we have shown that the 

higher order kinetic equations are divergent in an ir- 

reparable fashion. In view of this result it is impossible 

to calculate in finite terms the departures from the al- 

ready available kinetic equations (Boltzmann's for a shoro 

range gas, Landau's for a weakly coupled gas and 

Bogolubov's for a Debye gas). 

It is the writer's thesis that the breakdown of the 

expansion corresponds to the Impossibility of characteriz- 
23 Ing an arbitrary state of a system of 10 J  particles by 

means of the state of one typical (average) particle. 

Whence, to understand the behavior of a system with more 

accuracy than that afforded by the already available 

kinetic equations, it is necessary to determine the 

evolution of a typical pair of particles. Both the form 

of pair-kinetic equations and a method for removing the 

divergences (Method of Closure) have been described (2). 

The purpose of ti:-; present paper is to determine 

completely the nature of the singularities arising In the 

kinetic expansion. Thus, we shall present the explicit 

form of the nth order s-body distribution function by 

means of a graphical technique. 

The singularities discussed here lead to a "super- 

secular" behavior in all the s-body distributions of the 

weak-coupling kinetic theory. 

The notation to be employed is as follows. The 

Bogolubov expansion of the time derivative 

Is represented by means of the independent "time" variables 
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The hierarchy of equations for the time evolution of 

the s-body clusters in a weakly-coupled gas is written as: 

o7~ ^* ̂
F^ztr'rzL^1 (3) 

A table of the symbols employed is given in the Appendix. 

We shall consider only spatially homogeneous gases, 

whence 

f'F'-O M 

The extended "' distribution functions are expanded by 

means of: 

! i   ' "   I z F'= -L t£/, i-VKi-'' (5) 

_£Äf
5&
f?FsVfzr'^-   s# / (6) 

The special notation emphasizes the preferred role of the 

one-body distribution function in kinetic theory. 

We shall consider only solutions of (3) that cor- 

respond to the simple initial value problem defined by 

 1-^-—0 (7) 

and by the requirement that all initial correlations 

vanish. Thus, for example, 

We shall make extensile use of the operator valued 

distribution 

*r/-*/<?\ f ^~KA   I )        -^*-< 
5T'KV-   *    «-= >     (8) 

For compactness, we omit all particle indices whenever 

confusion cannot arise. Superscripts refer to the number 

of particles, subscripts to the particle vaiiables. 
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II.  GRAPHS 

The Ingredients of the kinetic expansion are f°, I, 
L,  and"J . These are represented as follows: 

thus: 
Vertical oriented lines represent f° and Jjl 

f l4fHM 

h iH 
Figure 1 

The "propagation functions"  T 
curved oriented lines. Thus, 

are denoted by 

? 
#2 

Figure 2 

The "interactions" Is are represented by circles. Thus, 

is represented by 

Figure 3        _^     -^ 

The "phase mixing" operator [j =\ix/^V(){^")(J'V^ 



-^^r-»^-«P-1~-w-7~»^--l|r-"»-rw<1f m W-w-T 

is represented by a rectangle, a cross indicating the 

phase mixed variable. Thus, L12 ^ -^ Ilg f^ f02 is 

represented by 

i e 

Figure 4 

The skeleton of a graph 2(j£ A8 the graph with a11 

freely streaming particles omitted. Thus, for example: 

i| JUt 

2(&) 
Figure 5 

The essential point of our analysis is that, for a 

given order of approximation, n, the number of skeleton 

graphs, <6~ , is independent of s: 

i  i» ' ^-O (9) 

Thus, a fixed number of skeletons characterizes the 

order of approximation for all the clusters of particles. 
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We shall see that 

(10) 
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III. THE WEAK-COUPLING EXPANSION 

(1) Zeroth order theory 

From (3) we have 

(ii) First order theory 

Since 

9- 

and 

"* ° , fi = ° 

(11) 

(12) 

(13) 

which corresponds to the skeleton in Fig. 6, 

(14) 

ft 
rO 

Figure 6 

we have, from (3) 

with 

if*1  _   J-5p*" 
it 0 

fli" 
P       = 

>r. fK7rK 

(15) 

(16) 
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7 
Therefore, 

FV'5rir/.«££UTr/.  "» 
Kj      y 

We call the first expression reducible, the second ir- 

reducible (i.e., only two-body Interactions appear 

explicitly). The reducible graph G is a sum of ir- 

reducible ones G corresponding to a single skeleton 

thus 

>*4- 

j.M 

G G' l(G*) 

Figure 7 

/Tie 2[o-^ of" F1S» 7 is the only irreducible skeleton 

in first order theory. 

(ill) Second order theory 

Prom (3) we have 
■So dF'1      ^F 

drt ov --H L rSH;l       -pS c-S/ +-T r (18) 

For s = 1, \'l8) is the Landau equation 

~^M^-)U (19) 

IT* 
represented in Fig. 8. But, 

so        5 2^ 
Or, 

{--,%- sH 

ib fr   /,... (20) 
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Figure 8 
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Z) 

(21) contains the three skeletons of Fig. 9: 

(21) 

/A 

Figure 9 

Skeleton (a) vanishes, (b) cancels exactly the contri- 
bution from (20). This latter cancellation of^f^A^ 
against a subset of    [_s   p5i~l<>y) occurs to all   M 

orders.    The contribution of the last term of (18), 

*f*>=l\Z*Tff>0 
(22) 

is represented by three skeletons: 

Figure 10 
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Adding (20), (21), and (22), and integrating (18) we find: 

r ^z 
57"/ (23) 

corresponding to the four skeletons 

\ 

(a) 

K*J/iD-r+ 

(Q 
Figure 11 

Clearly (b) contributes for S ^ 3  onlv and (c) for 

5^-4    only« 
Note that the graphs for the asymptotic value of 

s2 P  differ from those corresponding to the graphs for its 
""£-"'  derivative only because of the propagators at the 

top. 

(iv) Third order theory 

At this order the expansion breaks down. Prom (3) 
we have: 

The analysis proceeds as in second order. The graphs for 
the kinetic condition Q-^-A^ are given in Fig. 8. The 

contributions from^f*0/^^ exactly cancel a subset of 

Lx^f"     J • The divergent graphs arise from^P Af , 
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The operation "/fä    in fact inserts the second order 

kinetic condition on each of the "free legs" JL~0     of 

the graphs for Ps , leading to the following two skeletons 

in Fs3: 

(a)        (b) 
Figure 12 

where (K) denotes the entire Landau graph, (a) is 

divergent due to the coincidence of two singular 

functions 3T12 ~? 12' 
while (b) i- finite. The 32 

skeletons for F3^ are given in Fig. 13. 

(v) Higher order terms 

The construction of all the skeletons of a given 

order has now been made completely systematic. In Fig. 14 

we give the fourth order kinetic condition. The reader 

can convince himself of the fact that there are 

singularities corresponding to arbitrary powers of C5 

introduced by the derivatives 
-> K. 

o i n 
*3N2 

IF 

*s 

(24) 

Thus, for example, the simplest ( ^)' 

represented by the skeletons in Fig. 15. 

divergences are 
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Figure 14 
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Figure 15 



■ yii    jyiii. ■^■nBü||iwy iwiW.«»^».Nif M«»m r ■■ lyiwyiwiiipM'iii.^iiiiiimi n ■ ian.jfni.iiii mat' ■in»mn'wi - m? .1. «H "«f IT»— linn» jii  »miii i- nj,  IPI^   ii p    ip  mp J  ipjmpi    iiUii  MMWH.^i»|i^^»^ww>W^»Wryii l]flim iplH'^iw IflWWmW 

18 

IV. CONCLUSION 

It has been suggested x ' that the divergence in the 

kinetic expansion can be remedied by a matching of the 

small relative velocity behavior where the divergences 
2 

occur to terms introduced by expanding P in fractional 

powers of £l   . For the simple initial value problem 

it is not possible to remedy the expansion in this way. 

This can be seen as follows. 

Write 

£^V )   X^^t- (25) 

£S^T^GSn (26) 
f\     ( 

The resulting perturbation equations reduce back to (3) 

with (5) and (6) for the simple initial value problem. 

If initial correlations are allowed, this reduction 

breaks down. It is an open question whether a choice of 

initial correlations can be made that makes the fractional 

power expansion equivalent to the pair kinetic equation. 

The transient behavior of Fs depends on the choice 

of initial conditions. We have therefore not discussed 

it in this paper since it is best understood in con- 

nection with the complete initial value problem. 
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APPENDIX 

The Liouville equation is written as 

yp^-ff  F^ö (AD 

with the energy operator 

The kinetic energy and Interaction energy operators: 

•S_  s 

7r = T\/{'7t («) 

All quantities have been made dimensionless with 

respect to 

rQ the range of the two body interaction 

A)     the depth of the two body interaction 

T  the kinetic temperature of the gas 

The weak-coupling parameter is 

<^|f«l (A6) 

with the condition 

A/ rt/j^i (AT) 
where N is the number of particles in the system and V is 

the volume of the box that encloses it. 

The s-body distribution function is given by 


